

Gasification of RDF in two-stage reactor unit, comparison of two reactor configurations

Patrik Šuhaj – Jakub Husár – Juma Haydary

Slovak University of Technology in Bratislava

Introduction

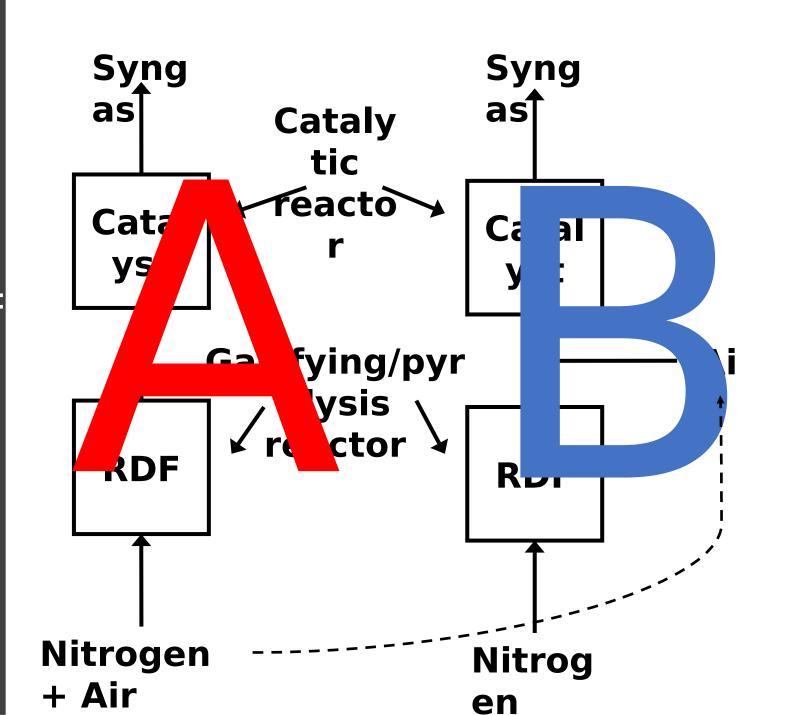
- RDF Refuse derived fuel
- Gasification syngas production
- Tars undesired product

RDF characterisation

Ultimate analysis (wt. %)		Proximate analysis (wt. %)				
N	1,4	Ash	10			
C	52	Moisture	4			
Н	8,2	Volatile matters	81			
S	0,22	Fixed carbon	6			
0	28					
Cl	0,72	LHV (MJ/kg)	21,3			

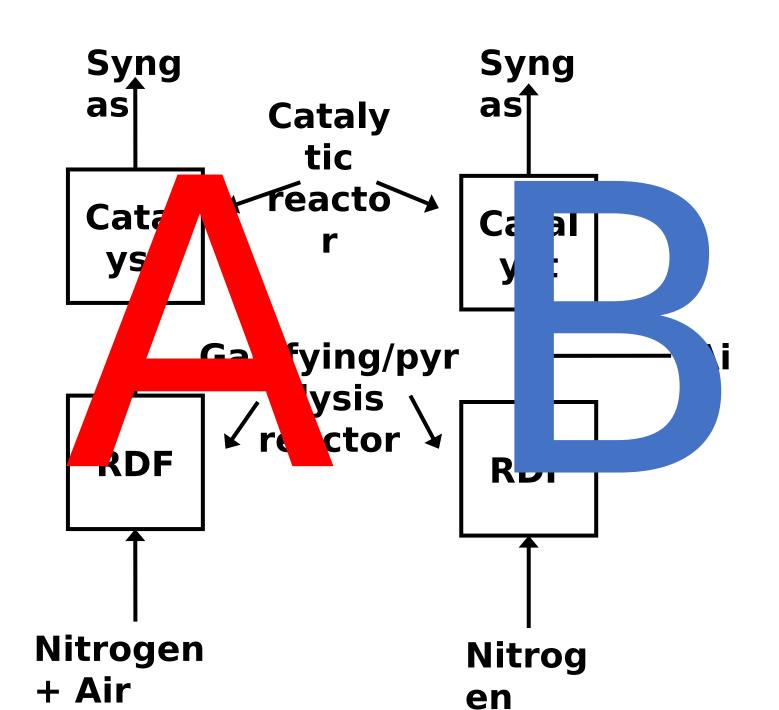
Goals

Comparison of 2 reactor configurations

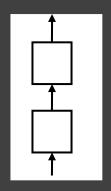

- Syngas composition
- Tar yields

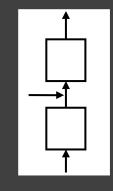
Materials and methods

Idea: partial oxidation zone:
air + volatiles = high
temperature

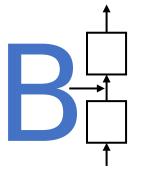

=> lower tar content in syngas

Configuration A Configuration B




Materials and methods

- Semibatch process: 10 g sample of RDF, 10 g catalyst, 15 L/h N_2 , 10 L/h air.
- Operating conditions: temperature of reactors – 700, 750 and 800 °C, preheated catalytic reactor, preheated furnace for gasifying/pyrolysis reactor.
- Catalyst: clay based catalyst enhanced by nickel oxide
- Syngas composition (sampled at the 5th minute)
- Tar yields determined by vacuum


Results

	Configuration A			Configuration B						
Temperature										
(°C)	700	750	800	700	750	800				
Gas Composition (vol. %)										
CO ₂	38,8	38,7	36,9	40,9	27,1	17,3				
H ₂	27,8	25,0	18,2	24,5	31,2	41,0				
СО	11,2	17,6	35,1	11,4	17,0	34,0				
Methane	8,2	4,8	3,0	11,5	11,1	4,6				
Hydrocarbons	14,0	14,0	6,9	12,4	13,7	2,9				
Tar yields [mg/g RDF]	15,4	14,4	9,19	15,5	14,4	5,61				

Conclusion

- Effect of partial oxidation on tar yields was obscured by activity of catalyst at 700 °C and 750 °C
- At 800 °C was observed drop of tar yield (comparison of configurations) and CO₂ and increased volume content of H₂
- Nickel oxide reduction by H₂
- H₂/CO ratio above 2 at 700 °C
- Pyrolysis coke utilisation

Thank you for your attention